
  
 
 
 

Journal of Mechanical Science and Technology 23 (2009) 578~589 
      www.springerlink.com/content/1738-494x

DOI 10.1007/s12206-008-1001-9 

Journal of 
Mechanical 
Science and 
Technology 

 
Laminar flow past a sphere rotating in the transverse direction† 

Dongjoo Kim* 
School of Mechanical Engineering, Kumoh National Institute of Technology, Gumi, Gyeongbuk 730-701, Korea 

 
(Manuscript Received August 7, 2008; Revised October 8, 2008; Accepted October 8, 2008) 

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

Abstract 
 
Laminar flow past a sphere rotating in the transverse direction is numerically investigated in order to understand the 

effect of the rotation on the characteristics of flow over the sphere. Numerical simulations are performed at Re = 100, 
250 and 300, where the Reynolds number is based on the free-stream velocity and the sphere diameter. The rotational 
speeds considered are in the range of 2.10 ≤≤ ∗ω , where ∗ω is the maximum velocity on the sphere surface nor-
malized by the free-stream velocity. Without rotation, the flow past a sphere experiences steady axisymmetry, steady 
planar-symmetry, and unsteady planar-symmetry, respectively, at Re = 100, 250 and 300. With rotation, however, the 
flow becomes planar-symmetric for all the cases investigated, and the symmetry plane of flow is orthogonal to the 
rotational direction. Also, the rotation affects the flow unsteadiness, and its effect depends on the rotational speed and 
the Reynolds number. The flow is steady irrespective of the rotational speed at Re = 100, whereas at Re = 250 and 300 
it undergoes a sequence of transitions between steady and unsteady flows with increasing ∗ω . As a result, the charac-
teristics of vortex shedding and vortical structures in the wake are significantly modified by the rotation at Re = 250 
and 300. For example, at Re = 300, vortex shedding occurs at low values of ∗ω , but it is completely suppressed at 

4.0=∗ω  and 0.6. Interestingly, at 1=∗ω  and 1.2, unsteady vortices are newly generated in the wake due to the 
shear layer instability. The critical rotational speed, at which the shear layer instability begins to occur, is shown to be 
higher at Re = 250 than at Re = 300. 
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1. Introduction 

Flow over a rotating sphere is of interest in many 
engineering applications associated with particle 
transport because solid particles, which are generally 
modeled as spheres, in a flow translate and rotate si-
multaneously due to particle-particle or particle-wall 
collisions. Therefore, it is important to understand the 
effect of rotation on the flow over a rotating sphere. 
However, only a little knowledge has been obtained 
for the characteristics of flow over a rotating sphere, 
and this is particularly because previous studies 
mainly focused on the force applied on the sphere with 

relatively little attention to flow characteristics. An-
other reason is that flow over a sphere shows com-
pletely unsteady three-dimensional phenomena even at 
low Reynolds number. 

The characteristics of flow over a rotating sphere 
depend significantly on the direction of rotation. One 
important direction of rotation is the streamwise direc-
tion, where the rotational direction is the same as that 
of translation. This rotation is equivalent to the revolu-
tion of axisymmetric bodies such as a bullet. The other 
direction is the transverse one, where the direction of 
rotation is orthogonal to that of translation. Note that 
the flow over a transversely rotating sphere corre-
sponds to the three-dimensional counterpart of flow 
over a circular cylinder rotating about the cylinder axis. 

For streamwise rotation, there have been several stud-
ies published in the literature and some important flow 

†This paper was recommended for publication in revised form by 
Associate Editor Dongshin Shin 

*Corresponding author. Tel.: +82 54 478 7301, Fax.: +82 54 478 7319 
E-mail address: kdj@kumoh.ac.kr 
© KSME & Springer 2009 



 D. Kim / Journal of Mechanical Science and Technology 23 (2009) 578~589 579 
 

characteristics have been revealed. For example, 
Schlichting [1] summarized previous results on flow 
over a streamwisely rotating sphere and introduced two 
specific features. First, the drag and the critical Rey-
nolds number, at which the drag coefficient decreases 
abruptly, depend strongly on the rotational speed [2]. 
Second, the line of separation is moved upstream due to 
the rotation [3]. Recently, Kim & Choi [4] numerically 
investigated the effect of the streamwise rotation on the 
drag, lift and vortical structures of laminar flow over a 
sphere up to Re = 300. In their study, the authors found 
an interesting flow phenomenon called ‘frozen’, where 
the vortical structures in the wake simply rotate without 
temporal variation in their strength. 

On the other hand, for transverse rotation, which is 
of the present interest, quite a few studies have been 
conducted mainly focusing on the relation between the 
rotational speed and the force (especially the lift 
known as Magnus effect) exerted on the sphere. For 
very low Reynolds numbers, Rubinow & Keller [5] 
derived a correlation between the rotational speed and 
the force on the sphere by using matched asymptotic 
expansions. The derived correlation shows that the 
rotation does not affect the drag, whereas the lift in-
creases with the rotational speed. The lift by Rubinow 
& Keller [5] may be written in a non-dimensional 
form as ∗= ω2lC . Here, lC  is the lift coefficient 
and )/( ∞

∗ = uRωω  is the non-dimensional rotational 
speed, where ω  is the angular velocity of the sphere, 
R  is the radius of the sphere, and ∞u  is the 
freestream velocity. On the other hand, at Rey-   
nolds numbers greater than unity, the lift coefficient 
does not follow the relation derived by Rubinow & 
Keller [5] but it depends on the Reynolds number and 
the rotational speed. For example, Barkla & Auchter-
lonie [6] experimentally obtained the relation of 

∗±= ω)04.016.0(lC  for 1500 < Re < 3000 and 
42 << ∗ω , while Tsuji et al. [7] reported 

∗±= ω)10.040.0(lC  for 1600Re150 <<  and 
7.0<∗ω . Later, Oesterlé & Dinh [8] found from their 

experimental study that lC  increases with increasing 
∗ω  or decreasing Re and proposed a relation for the 

range of 140Re10 <<  and 61 << ∗ω . However, 
the dependency of lC  on Re becomes smaller with 
increasing Reynolds number, and lC  is almost inde-
pendent of Re at high Reynolds numbers ( 410Re > ), 
as explained by Oesterlé & Dinh [8]. 

Despite many previous studies, only little knowl-
edge has been obtained for the moderate Reynolds 
number range ( 300Re100 ≤≤ ) of the present interest. 

Furthermore, to the best of the author's knowledge, 
there has been little effort to investigate the effect of 
the transverse rotation on the characteristics of three-
dimensional flow behind the sphere except the follow-
ing recent studies. Kurose & Komori [9] numerically 
investigated the flow over a rotating sphere 
( 500Re1 ≤≤ , 25.00 ≤≤ ∗ω ) in a linear shear flow 
and found that the vortex shedding frequency in-
creases with increasing rotational speed or fluid shear 
rate. Meanwhile, Niazmand & Renksizbulut [10] nu-
merically examined the effects of the sphere rotation 
and the surface blowing on wake structure for 

10 ≤≤ ∗ω  at 200Re ≤  and 5.00 ≤≤ ∗ω  at 
300Re200 ≤< . They found that the rotation causes 

vortex shedding to occur at lower Reynolds numbers 
(e.g., 200Re =  at 5.0=∗ω ) as compared to the 
case of a non-rotating sphere. These studies revealed 
some important aspects of the flow characteristics, but 
their results are limited to relatively low rotational 
speeds. 

One of the interesting issues is whether or not the ro-
tation of the sphere can suppress vortex shedding from 
the sphere. In case of the flow over a circular cylinder, 
i.e., the two-dimensional counterpart of the present 
study, some researchers [11, 12] reported that vortex 
shedding is completely suppressed by the rotation of the 
cylinder at relatively high rotational speeds. Also, Mittal 
& Kumar [12] found that the flow becomes unsteady 
again at very high rotational speeds. Interestingly, the 
suppression of vortex shedding (at 4.0=∗ω  and 0.6) 
and reappearance of unsteady flow (at 1=∗ω ) were 
also found in the sphere wake at Re = 300 in the au-
thor’s preliminary study [13]. Therefore, one of the 
objectives of this paper is to understand the underlying 
physics for these phenomena with an in-depth discus-
sion. In this study, numerical simulations are performed 
in order to investigate the effect of the transverse rota-
tion on three-dimensional vortical structures of flow 
over a sphere. In addition, the variations of the Strouhal 
number, drag and lift forces due to the rotation are also 
investigated in detail. For these purposes, the Reynolds 
number and the rotational speed have been carefully 
chosen in this study. The Reynolds numbers considered 
are 100, 250 and 300 covering steady axisymmetric, 
steady planar-symmetric and unsteady planar-
symmetric flows without rotation. The non-dimensional 
rotational speed ∗ω  is in the range of 2.10 ≤≤ ∗ω , 
which is wide enough to resolve the above-mentioned 
issue as will be explained below. 
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Fig. 1. (a) Coordinate system and boundary conditions; (b) 
mesh near the sphere. 
 

2. Numerical details 

In the present study, flow over a sphere is simu-
lated in a cylindrical coordinate system by using an 
immersed boundary method [14]. In this method, 
momentum forcing and mass source/sink are intro-
duced inside the sphere to satisfy the no-slip condi-
tion on the sphere surface and the continuity for the 
cells containing the immersed boundary, respectively. 
This method has been successfully applied to various 
laminar and turbulent flows: for example, laminar 
flows over a sphere and a hemisphere [4, 15, 16] and 
turbulent flow over a sphere [17, 18]. For the details 
of the present numerical method, see Kim et al. [14] 
and Kim & Choi [4]. 

Fig. 1 shows the coordinate system, computational 
domain and mesh near the sphere. As explained be-
fore, the cylindrical coordinate system is employed, 
where x , r  and θ  denote the streamwise, radial 
and azimuthal directions, respectively. A Cartesian 
coordinate system ( x , y , z ) is also defined in order 
to represent the drag and lift forces, where the lift 
force is decomposed into two orthogonal ( y  and z ) 
components. The computational domain used is 

dxd 1515 ≤≤− , dr 150 ≤≤  a n d  πθ 20 <≤ , 
where ( 0=x , 0=r ) corresponds to the center loca-
tion of the sphere and d  is the sphere diameter. A 
Dirichlet boundary condition ( ∞= uux , 0=ru , 

0=θu ) is used at the inflow and far-field boun-
daries, and a convective boundary condition 
( 0// =∂∂+∂∂ xuctu ii ) is used for the outflow 
boundary, where c  is the space-averaged stream-
wise velocity at the exit. For all the Reynolds num- 

Table 1. Simulation results for flow over a stationary sphere. 
Here, dC  and lC  are the time-averaged drag and lift 
coefficients, respectively.  
 

 Re dC  lC  St

100 1.087   

250 0.702 0.061  Present 

300 0.658 0.067 0.134

Fornberg [19] 100 1.085   

250 0.70 0.062  
Johnson & Patel [20] 

300 0.656 0.069 0.137

250 0.70 0.062  
Constantinescu & Squires [21] 

300 0.655 0.065 0.136

Tomboulides & Orszag [22] 300 0.671  0.136
 
bers, a non-uniform mesh is used with dense resolu-
tion at dr 5.0≅ for accurately capturing the separat-
ing shear layer around the sphere. The number of grid 
points used is )(40)(131)(385 θ×× rx . The number 
of grid points and the computational domain size 
were carefully determined from an investigation of 
their effect on the solution. In the case of rotating 
sphere, the direction of the rotation coincides with the 
−z axis, i.e., orthogonal to the streamwise direction 

as shown in Fig. 1(a), and the non-dimensional rota-
tional speed investigated is 2.1)/(0 ≤=≤ ∞

∗ uRωω . 
In the present study, flows past a stationary sphere are 
first simulated and then they are used as initial flow 
fields when flows past a rotating sphere are simulated. 

Table 1 shows the present results for flow over a 
stationary sphere together with those from previous 
numerical studies [19-22] in which body-fitted grids 
were used. Here, flows at Re = 100, 250 and 300 
represent three different laminar flow regimes: steady 
axisymmetric flow ( 200Re ≤ ), steady planar-
symmetric flow ( 270Re210 ≤≤ ), and unsteady 
planar-symmetric flow ( 375Re280 <≤ ) [20,22-24]. 
As clearly shown in Table 1, the drag and lift coeffi-
cients, and the Strouhal number ( ∞= ufdSt / ), 
where f  is the vortex shedding frequency, are all in 
good agreement with the previous results. 
 

3. Results 

3.1 Vortical structure 

Fig. 2 shows the variation of vortical structures 
with the rotation at Re = 100, where the surfaces of 
vortical structures are identified by using the method 
of Jeong & Hussain [25]. When the sphere is station-
ary ( 0=∗ω ), the flow is steady axisymmetric and no  
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Fig. 2. Variation of vortical structures with the rotational 
speed at Re = 100. 

 
vortical structure exists in the wake. On the other 
hand, in the case of rotating sphere ( 0>∗ω ), a non-
axisymmetric velocity field is induced by the trans-
verse rotation of the sphere and the flow becomes 
steady planar-symmetric, losing axisymmetry. As a 
result, a pair of vortical structures are generated be-
hind the rotating sphere for 25.0≥∗ω . With increas-
ing rotational speed, these structures become stronger 
and elongated in the streamwise direction. Note that 
the vortical structures at 25.0≥∗ω  (especially, at 

25.0=∗ω ) are very similar to those of the flow past 
a stationary sphere at Re = 250 (see the case of 

0=∗ω  in Fig. 4). 
To understand the effect of rotation on the velocity 

field, the streamlines near the sphere are shown on the 
( yx, )- and ( zx, )-planes for various rotational speeds 
at Re = 100 in Fig. 3. As the rotational speed in-
creases, the upward deflection (i.e., in the y+  direc-
tion) of the wake becomes significant (see left fig-
ures) and the recirculation region behind the sphere 
becomes smaller at 25.0=∗ω  and eventually disap-
pears at 6.0=∗ω  (see right figures). This observa-
tion is in good agreement with the numerical results 
of Niazmand & Renksizbulut [10] where the recircu-
lation region ceases to exist for 5.0≥∗ω . It is also 
clear from this figure that the flow over a rotating 
sphere is planar-symmetric and the symmetry plane is 
the ( yx, )-plane, i.e., orthogonal to the rotational axis 
( −z axis). This feature is also true for the two other 
Reynolds numbers considered in this study. 

Fig. 4 shows the variation of vortical structures 
with rotation at Re = 250. Without rotation, the flow 
is steady planar-symmetric and a pair of streamwise 
vortices appear in the wake. At 1.0=∗ω , the vor- 
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Fig. 3. Streamlines on the ( yx, )- and ( zx, )-planes at Re = 
100: (a) 0=∗ω ; (b) 25.0=∗ω ; (c) 6.0=∗ω . 

 
tices become stronger due to the rotation as at Re = 
100, but they are periodically split into two parts and 
convect downstream, resulting in unsteady wake. The 
unsteadiness due to the rotation becomes significant 
at 25.0=∗ω , and vortex shedding occurs in the form 
of hairpin vortex which is similar to the vortex in the 
unsteady flow past a stationary sphere at Re = 300 
(see Fig. 5). However, at larger rotational speeds 
( 4.0=∗ω , 0.6, and 1), vortex shedding is completely 
suppressed and thus the flow returns to a steady state. 
In this range of ∗ω  showing steady flow, there is 
little variation in vortical structures and their common 
feature is that a pair of vortical structures in the wake 
are elongated down to the exit boundary. On the other 
hand, at 2.1=∗ω , the flow becomes unsteady again 
and periodic vortex loops are generated in the wake. 
The occurrence of unsteady vortex loops at high rota-
tional speeds is also found at Re = 300 as explained 
below and further discussion will be made in §3.2. 

Fig. 5 shows the variation of vortical structures 
with the rotation at Re = 300. For a stationary sphere, 
the flow is unsteady planar-symmetric due to the pe-
riodic shedding of hairpin vortices maintaining pla-
nar-symmetry. At low rotational speeds ( 25.00 ≤≤ ∗ω ), 
there is no significant change in vortical structures 
except that the distance between consecutive vortices 
decreases due to the increase of the vortex shedding 
frequency with increasing rotational speed. On the  
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Fig. 4. Variation of vortical structures with the rotational 
speed at Re = 250. 
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Fig. 5. Variation of vortical structures with the rotational 
speed at Re = 300. 

 
other hand, at intermediate rotational speeds 
( 4.0=∗ω  and 0.6), vortex shedding is completely 
suppressed as in the case of Re = 250. It is very inter-
esting to note that a similar phenomenon was also 
observed in the flow past a rotating circular cylinder 
by some researchers [11,12]. For example, Kang et al. 
[11] numerically found that for a given Reynolds 
number at which vortex shedding occurs from a sta-
tionary cylinder, the flow over a rotating cylinder 
maintains vortex shedding at low rotational speeds 
but vortex shedding completely disappears at rota-
tional speeds higher than the critical value (e.g., 

8.1=∗
critω  at Re = 100). 
The suppression of vortex shedding from a sphere 

observed at 4.0=∗ω  and 0.6 for Re = 300, however, 
is not maintained at higher rotational speeds (Fig. 5). 
That is, the flow becomes unsteady again at 1=∗ω  
and 1.2, similar to the case of 2.1=∗ω  at Re = 250 
(Fig. 4). Therefore, it is clear that there are two sepa- 
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Fig. 6. Flow regimes depending on the Reynolds number and 
the rotational speed. ●, steady axisymmetric flow; +, steady 
planar-symmetric flow; ▼, unsteady planar-symmetric flow. 
 
rate unsteady flow regimes for both Reynolds num-
bers, but the critical rotational speed for the occur-
rence of the second unsteady regime is lower at Re = 
300 ( 16.0 ≤< ∗

critω ). A close look at Fig. 5 shows 
that wake structures in the second unsteady regime at 
high rotation speeds ( 1=∗ω  and 1.2) are quite dif-
ferent from those in the first unsteady regime at low 
rotational speeds ( 25.00 ≤≤ ∗ω ). First, shed vortices 
take the form of a hairpin vortex composed of the 
head and legs at 25.00 ≤≤ ∗ω , whereas at 1=∗ω  
and 1.2, the strength of the legs is weak and thus vor-
tices manifest themselves in vortex loops as they con-
vect downstream. Second, the vortex shedding fre-
quencies at 1=∗ω  and 1.2 are much higher than 
those in the range of 25.00 ≤≤ ∗ω  (see Fig. 14 for 
quantitative analysis). Note that a similar reappear-
ance of unsteady flow at very high rotational speeds 
was also observed in the flow over a rotating cylinder 
by Mittal & Kumar [12]. They found that vortex 
shedding observed for 91.1<∗ω  is suppressed for 

34.491.1 ≤≤ ∗ω , but unsteady flow appears again in 
the range of 70.434.4 << ∗ω . 

To summarize the findings, the flows over a sphere 
with and without the transverse rotation can be cate-
gorized into three different flow regimes depending 
on the Reynolds number and the rotational speed as 
shown in Fig. 6. The flow regimes are steady axi-
symmetric, steady planar-symmetric, and unsteady 
planar-symmetric flows. From the viewpoint of un-
steadiness, the flow at Re = 100 is steady for all the 
rotational speeds investigated, whereas at Re = 250 
and 300, the flows experience a series of transitions 
between steady and unsteady flows depending on the 
rotational speed. However, in terms of flow symmetry, 
flow over a rotating sphere is planar-symmetric for all 
the cases investigated. 
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Fig. 7. Vortical structures and phase diagram for Re = 300 
and 0.1ω∗ = : (a) instantaneous vortical structures with rota-
tion; (b) phase diagram of the lift coefficients ( yC , zC ). 

 
It should be noted here that there is a difference in 

the direction of flow symmetry between the planar-
symmetric flows with and without rotation. In the 
case of stationary sphere ( 0=∗ω ), the location 
where the vortex loop is detached is a priori unknown 
and determined by numerical disturbances such as 
round-off errors and random disturbances in the initial 
condition [22]. On the other hand, in the case of rotat-
ing sphere ( 2.11.0 ≤≤ ∗ω  in this study), the vortex 
generation or detachment location is determined by 
the direction of sphere rotation, so the plane of sym-
metry becomes the ( yx, )-plane as shown in Fig. 7. In 
the figure, yC  and zC  are the components of lift 
coefficient in the y  and z  directions, respectively. 
Therefore, zC  is zero all the time at 1.0=∗ω , but it 
is not necessarily zero at 0=∗ω , even though both 
flows are planar-symmetric. Also, yC  is always 
negative at 1.0=∗ω  because the direction of the lift 
force on the sphere is not alternating but fixed in time. 

 
3.2 The second instability at high rotational speeds 

As explained before, in the cases of Re = 250 and 
300, the flows over a rotating sphere experience a 
sequence of flow transitions with increasing rotational 
speed. As a result, there exist two separate unsteady 
flow regimes, one of which is found at low rotational 
speeds but the other at high rotational speeds. Based 
on the observation that the two unsteady flow regimes  

 

 
                          (a)                                             (c) 

 
                          (b) 
 
Fig. 8. Streamlines on the ( yx, )-plane at Re = 300: (a) 

0.1ω∗ = ; (b) 0.6ω∗ = ; (c) 1ω∗ = . In case of unsteady flow, 
the time sequence of streamlines is shown during one period 
( T ). 

 
have different vortical structures and vortex shedding 
frequency as explained in §3.1, it may be conjec-
tured that they have different instability mechanisms. 
At this point, it is reasonable to ask why the flow 
becomes unsteady again at high rotational speeds. 
Therefore, in this section, the dynamic characteristics 
of the two unsteady flow regimes are compared and a 
possible explanation is suggested for the reappearance 
of unsteady flow at high rotational speeds. 

Fig. 8 shows the streamlines near the sphere on the 
),( yx -plane at Re = 300 for various rotational speeds, 

where the time sequence of streamlines is shown 
during one period (T ) in the case of unsteady flow. 
In the unsteady flow at 1.0=∗ω  (Fig. 8a), the slow 
rotation of the sphere does not have much effect on 
the vortex shedding pattern. At Tt 4/1= , a vortex is 
newly formed near the upper shear layer, which en-
trains fluid from the lower side of the sphere. As time 
goes on, this vortex grows in strength by entraining 
fluid from the upper freestream as well as from the 
lower side of the sphere ( Tt 4/2= ), and then it con-
vects downstream forming a limit cycle ( Tt 4/3= ). 
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Finally, the vortical structure loses its spiral appear-
ance ( Tt = ), completing one cycle of vortex shed-
ding. This overall procedure is similar to the vortex 
shedding process from a stationary sphere (see Fig. 
25 of Johnson & Patel [20]) except that the vortical 
structure in the lower side becomes weaker due to the 
rotation. On the other hand, at 6.0=∗ω  where the 
flow is steady (Fig. 8b), there exists no vortex behind 
the sphere due to the enhanced upward motion of the 
fluid from the lower side. Instead, a thin and stable 
shear layer is formed at the interface where the upper 
freestream and the flow entrained from the lower side 
of the sphere meet together. The stability of the upper 
shear layer, however, is not maintained at high rota-
tional speeds. At 1=∗ω , where the flow becomes 
unsteady again (Fig. 8c), the streamlines clearly show 
an unsteady flow motion in the form of a traveling 
wave in the upper shear layer. This flow pattern of 
traveling wave is very different from that with vortex 
shedding at 1.0=∗ω  (Fig. 8a), and the unsteady 
flow at 1=∗ω  appears to be triggered not by vortex 
shedding but by the shear layer instability. 

To understand the shear layer characteristics at 
1=∗ω  in more detail, azimuthal vorticity contours 

and particle tracing results are investigated. Fig. 9 
shows instantaneous contours of azimuthal vorticity 
on the ( yx, )-plane at 1=∗ω  together with those at 

6.0=∗ω  for comparison. At 6.0=∗ω , where the 
flow is steady (Fig. 9a), the transverse rotation causes 
the upper shear layer to be elongated to the far down-
stream region without losing its stability. On the other 
hand, in the case of unsteady flow at 1=∗ω  (Fig. 
9b), the vorticity contours clearly show the existence 
of shear layer instability at dx > . The shear layer 
characteristics at 1=∗ω  are also examined by per-
forming particle tracking simulation as shown in Fig. 
10. Here, at every third computational time step, 
twenty particles are released uniformly along the 
radial direction in both the upper ( 2/55.0 ≤≤ dy ) 
and lower ( 55.0/2 −≤≤− dy ) sides of the sphere at 

dx 5.0= . Fig. 10 corresponds to the snapshot at 
∞= udt /16  after releasing the particles. The periodic 

swirling motion of the particles is clearly shown 
along the upper shear layer, confirming the existence 
of the shear layer instability. 

 
3.3 Strouhal number and drag and lift coefficients 

Fig. 11 shows the time history of drag and lift coef 
ficients at Re = 250, where )( xd CC =  is the drag  

 
 
Fig. 9. Contours of azimuthal vorticity on the ( yx, )-plane at 
Re = 300: (a) 0.6ω∗ = ; (b) 1ω∗ = . 
 

 
 
Fig. 10. Flow structure characterized by particle tracing for 
Re = 300 and 1ω∗ = . 

 
coefficient, the lift coefficient )( 22

zyl CCC +=  
denotes the lift magnitude, and yC  and zC  are the 
components of lC  in the y  and z  directions, 
respectively. Note that in the case of rotating sphere, 

lC  is the same as yC−  because the flow is planar-
symmetric ( 0=zC ) and the lift force is always ap-
plied in the y−  direction as shown in Fig. 7. As 
expected from vortical structures in Fig. 4, the drag 
and lift coefficients are constant in time at 

14.0 ≤≤ ∗ω  where the flow is steady, whereas they 
are time-periodic in unsteady flow at 1.0=∗ω , 0.25, 
and 1.2. At 1.0=∗ω  with vortex shedding in the 
form of streamwise vortices, the fluctuation of lift 
coefficient is notable but that of drag coefficient is 
negligible. However, in the case of 25.0=∗ω , hair-
pin vortices are shed and thus both the drag and lift 
coefficients clearly show a periodic variation, and 
their fluctuation amplitudes become larger than those 
at 1.0=∗ω . Meanwhile, at 2.1=∗ω  where vortex 
loops are generated due to the shear layer instability, 
the amplitude of drag fluctuation is larger than that of 
lift fluctuation. 
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Fig. 11. Time history of drag and lift coefficients at Re = 250: 
(a) drag; (b) lift. Solid and dashed lines are used for unsteady 
and steady flows, respectively. dC  and lC  for 1ω∗ =  are 
denoted by a thick line for a clear comparison with those for 

1.2ω∗ = . 
 
Observation of unsteady flow for some rotational 

speeds at Re = 250, where the flow is steady without 
rotation, implies that the rotation of the sphere trig-
gers instability at a lower Reynolds number. The 
early instability due to the rotation was also found in 
the numerical study of Niazmand & Renksizbulut 
[10], who obtained unsteady flows at Re = 250 in the 
cases of 16.0=∗ω , 0.25, and 0.5. However, they 
did not observe the following transitions (returning to 
steady flow and subsequent second instability) found 
in this study, because their interest was restricted to 
the range of 5.0≤∗ω . 

Fig. 12 shows the time history of drag and lift coef-
ficients at Re = 300, where hairpin vortices are shed 
from a stationary sphere (see Fig. 5). At 1.0=∗ω  
and 0.25 maintaining the vortex shedding of hairpin 
vortices, the time-periodic behavior is clearly shown 
in the drag and lift coefficients. Due to higher vortical 
strength compared with the vortical structures at Re = 
250, the amplitudes of the drag and lift fluctuations at  
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(b) 

 
Fig. 12. Time history of drag and lift coefficients at Re = 300: 
(a) drag; (b) lift. Solid and dashed lines are used for unsteady 
and steady flows, respectively. dC and lC  for 1ω∗ =  are 
denoted by a thick line for a clear comparison with those 
for 1.2ω∗ = . 
 
Re = 300 are larger than those at Re = 250, respec-
tively. However, at 4.0=∗ω  and 0.6, the drag and 
lift coefficients are constant in time due to the sup-
pression of vortex shedding, similar to the case of Re 
= 250. Finally, at 1=∗ω  and 1.2 showing the insta-
bility in the form of vortex loops, the drag coefficient 
becomes periodic again, but the temporal variation of 
lift coefficient is negligible. 

The dynamic behaviors of the drag and lift forces at 
Re = 250 and 300 are replotted in the form of phase 
diagram ( lC , dC ) in Fig. 13. The phase diagram takes 
the form of a closed curve for time-periodic unsteady 
flows, but it falls on a point for steady flows. The 
position of the curve indicates the time-averaged val-
ues of dC  and lC , and its size represents the fluc-
tuation amplitudes. Therefore, it is clear that for both 
Reynolds numbers the time-averaged values of dC  
and lC  monotonically increase with increasing rota-
tional speed, whereas their fluctuation amplitudes 
show a non-monotonic behavior. That is, the fluctua- 
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Fig. 13. Phase diagram of lC  and dC : (a) Re = 250; (b) Re 
= 300. Note that the scales of x −  and y − axes are differ-
ent. 

 
tion amplitudes of dC  and lC  first increase with 
increasing rotational speed, but they vanish when the 
flow is steady. With a further increase in the rota-
tional speed, the fluctuation amplitude of dC  in-
creases again significantly but that of lC  is rela-
tively small (at Re = 250) or negligible (at Re = 300). 
As a result, at Re = 300, the phase diagrams of high 
rotational speeds ( 1=∗ω  and 1.2) become nearly 
horizontal lines, which are very different from those 
of low rotational speeds ( 25.00 ≤≤ ∗ω ). This differ-
ence between the low and high rotational speed re-
gions may be attributed to the different vortical struc-
tures (Fig. 5). 

Fig. 14 shows the effect of the rotation on the 
Strouhal number ( ∞= ufdSt / ), where f  is the 
frequency associated with vortex shedding or shear 
layer instability. In the present study, the Strouhal 
number is obtained from the time histories of dC  
and lC . The Strouhal number is zero for steady flow 
because dC  and lC  are constant. For both Rey-
nolds numbers of 250 and 300, non-zero Strouhal 
numbers are found in two separate regions, one of  

  
Fig. 14. Effect of the rotation on the Strouhal number 
( ∞= ufdSt / ). ----- , Re = 250; ‥‥‥, Re = 300. 

 
which exists at low rotational speeds ( 1.0=∗ω  and 
0.25 for Re = 250; 25.00 ≤≤ ∗ω  for Re = 300) and 
the other at high rotational speeds ( 2.1=∗ω  for Re = 
250; 1=∗ω  and 1.2 for Re = 300). In the low ∗ω  
unsteady region, the Strouhal number at Re = 300 
increases gradually from the value without rotation 
( 134.0=St ) as ∗ω  increases. This trend is in good 
agreement with the numerical results by Kurose & 
Komori [9]. Also, it is clear that for 1.0=∗ω  and 
0.25, the effect of the Reynolds number on the Strou-
hal number is very small between Re = 250 and Re = 
300. On the other hand, in the high ∗ω  unsteady 
region, the Strouhal number shows a sudden increase 
due to the shear layer instability with its value being 
approximately three times greater than that due to 
vortex shedding at Re = 300 and 0=∗ω . 

 Fig. 15 shows the variation of the drag and lift co-
efficients with respect to the rotational speed, where 
the drag and lift coefficients are averaged over a vor-
tex shedding period in the case of unsteady flow. For 
comparison, the figure includes the data from Kurose 
& Komori [9] and Oesterlé & Dinh [8], where lC  
values of Oesterlé & Dinh [8] are obtained from the 
correlation proposed for 140Re10 <<  and 

41 ≤≤ ∗ω . Both the present drag and lift coefficients 
are in good agreement with the previous results even 
though the present lift coefficients at Re = 100 are a 
little larger than the previous ones. For a given Rey-
nolds number, the drag and lift coefficients mono-
tonically increase with the rotational speed. On the 
other hand, when a rotational speed is fixed, the drag 
coefficient monotonically decreases with the Rey-
nolds number, whereas the lift coefficient shows a 
different behavior depending on the rotational speed. 
That is, with increasing Reynolds number from 100 to 
250, the lift coefficient increases if 4.0<∗ω  but it 
decreases if 4.0>∗ω . However, there exists only a  
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Fig. 15. Variation of drag and lift coefficients with respect to 
the rotation speed: (a) drag; (b) lift. ———, Re = 100 (pre-
sent); ----- , Re = 250 (present); ‥‥‥, Re = 300 (pre-
sent); ×, Re=100 (Kurose & Komori [9]); +, Re = 300 (Ku-
rose & Komori [9]); △, Re = 100 (Oesterlé & Dinh [8]). 

 
little variation in lC  between Re = 250 and Re = 
300 and this agrees well with the observation made 
by Kurose & Komori [9] that lC  tends to approach 
a constant value at high Reynolds numbers 
( 200Re > ). 

To explain the variation of the lift force, several re-
searchers have used the ratio of the lift coefficient to 
the rotational speed (i.e., ∗ω/lC ). The ratio ∗ω/lC  
obtained from the present results is illustrated as a 
function of ∗ω  in Fig. 16. For all the Reynolds num-
bers investigated, the ratio decreases with increasing 
rotational speed. This trend agrees well with the ex-
perimental results of Barkla & Auchterlonie [6] and 
Oesterlé & Dinh [8]. For the present range of Re and 

∗ω , the ratio varies between 0.5 and 1.6, which is 
smaller than the value of two derived by Rubinow & 
Keller [5] for very low Reynolds number. 
 

4. Summary and concluding remarks 

Laminar flow past a sphere rotating in the trans-
verse direction was simulated by using an immersed  

  
Fig. 16. Variation of ∗ω/lC  with respect to the rotational 
speed. ———, Re = 100; ----- , Re = 250; ‥‥‥, Re = 
300. 
 
boundary method in order to investigate the effect of 
the rotation on the vortical structures behind the 
sphere as well as the drag and lift forces exerted on 
the sphere. Numerical simulations were performed at 
Re = 100, 250 and 300 in the range of 2.10 ≤≤ ∗ω . 
The results showed that the flow around the sphere 
strongly depends on both the Reynolds number and 
the rotational speed. 

The flows over a sphere with and without the 
transverse rotation were categorized into three differ-
ent flow regimes: steady axisymmetric, steady planar-
symmetric and unsteady planar-symmetric flows. At 

0=∗ω  (without rotation), the flow past the sphere 
was steady axisymmetric, steady planar-symmetric, 
and unsteady planar-symmetric at Re = 100, 250 and 
300, respectively. With the transverse rotation, the 
flow became planar-symmetric for all the cases inves-
tigated and the symmetry plane was orthogonal to the 
axis of the rotation. However, whether the flow was 
steady or unsteady depended on the Reynolds number 
and the rotational speed. At Re = 100, the flow was 
steady planar-symmetric for all the cases of 0>∗ω . 
On the other hand, at Re = 250 and 300, the flows 
experienced a sequence of transitions between steady 
planar-symmetric and unsteady planar-symmetric 
flows with increasing ∗ω . 

One of the interesting issues is whether or not the 
rotation of the sphere can suppress vortex shedding 
from the sphere. To resolve this issue, the characteris-
tics of vortex shedding were examined in detail. At 
Re = 300, vortex shedding occurred at low values of 

∗ω  maintaining the form of hairpin vortices, but it 
was completely suppressed at 4.0=∗ω  and 0.6. 
Interestingly, however, at 1=∗ω  and 1.2, unsteady 
vortex loops were newly generated in the wake due to 
the shear layer instability. The two unsteady flow 
regimes, separated by the steady one, were very dif-
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ferent in the vortex shedding frequency as well as 
vortical structures. The Strouhal number associated 
with the shear layer instability was much higher than 
that with vortex shedding of hairpin vortices. To the 
author’s knowledge, this is the first attempt to report 
the suppression of vortex shedding from a sphere by 
the transverse rotation and the reappearance of un-
steady flow due to the shear layer instability. In this 
study, it was not tried to find the exact boundary of 

∗ω  at which vortex shedding is suppressed, but the 
upper boundary (critical rotational speed), over which 
the shear layer instability begins to appear, was 
shown to be higher at Re = 250 than at Re = 300. It 
was also shown that the time-averaged drag and lift 
coefficients monotonically increased with increasing 
rotational speed, agreeing well with the previous stud-
ies. 

As explained so far, the effect of rotation on the 
flow is complicated for the entire range of ∗ω  inves-
tigated. However, if our attention is limited to the low 
rotational speed range ( 25.0≤∗ω ), the effect of rota-
tion can be summarized as follows: For the Reynolds 
number range considered, the slow rotation has a 
similar effect as increasing the Reynolds number. For 
example, the vortical structures behind a rotating 
sphere ( 25.0=∗ω ) at Re = 100 and 250 were very 
similar to those behind a stationary sphere ( 0=∗ω ) 
at Re = 250 and 300, respectively. Besides, increasing 
rotational speed ( 25.00 ≤≤ ∗ω ) at Re = 300 had the 
same effect as increasing Reynolds number from Re 
= 300 without rotation ( 0=∗ω ) in that both ways 
increase the vortex shedding frequency (see Fig. 14 
and Sakamoto & Haniu [26]). 
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